APPLICATION OF SWARM INTELLIGENCE TO BIFURCATION ANALYSIS

Haruna Matsushita, Ph.D, Associate Professor

matsushita.haruna@kagawa-u.ac.jp

Background

♦ DYNAMICAL SYSTEMS

- Complex real-world dynamics can be modeled as dynamical systems.
- Analyzing dynamical systems is important to solve a variety of problems in the real world.

♦ BIFURCATION

- Dynamical systems mostly contain one or more parameters.
- Bifurcation occurs when a small change,
 applied to the parameter values of a system,
 causes a sudden qualitative change in the periodic solutions' behavior.
- Bifurcation analysis, which investigates how bifurcation depend on the system parameters, is one of the most important nonlinear analysis techniques for understanding phenomena of systems.

♦ BIFURCATION PARAMETER DETECTION METHODS

- ♦ Brute-force method requires larger amount of calculations.
- ♦ The classic methods based on Newton method require the derivative of the objective functions and appropriate initial conditions.

Proposal of Bifurcation Parameter Detection Strategy Based on Particle Swarm Optimization Main PSO (PSO_{bif}) while (criterion)

♦ PARTICLE SWARM OPTIMIZATION (PSO)

- is one of the simplest population-based optimization techniques.
- ♦ avoids the derivative of the objective function.

✤ BIFURCATION PARAMETER DETECTION STRATEGY

BY USING THE NESTED-LAYER PSO (NLPSO)

- is a non-Newton method and is performed by two nested PSOs.
- requires no strict settings of initial values or cumbersome manual calculations.
- \diamond can accurately and directly find the bifurcation parameters set.
- can obtain a bifurcation diagram of **both unstable and stable periodic points.**
- ♦ is applicable to detection of
 - local bifurcations including period-doubling,
 saddle-node and Neimark-Sacker bifurcations.
 - border-collision bifurcations in piecewise smooth maps

for i = 1: M particles

Update ith particle

Input z_{bi}

Inner PSO

(PSO_{pp})

Output g_1

Evaluate ith particle

end for

end while

Update gbest

using g₁